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In this paper we investigate salt transport during the evaporation and upflow of
saline groundwater. We describe a model in which a sharp evaporation–precipitation
front separates regions of soil saturated with an air–vapour mixture and with saline
water. We then consider two idealized problems. We first investigate equilibrium
configurations of the freshwater system when the depth of the soil layer is finite,
obtaining results for the location of the front and the upflow of water induced by the
evaporation. We then develop a solution for a propagating front in a soil layer of
infinite depth and investigate the gravitational stability of the salinity profile which
develops below the front, obtaining marginal linear stability conditions in terms of
a Rayleigh number and a dimensionless salt saturation parameter. Applying our
findings to realistic parameter regimes, we predict that salt fingering is unlikely to
occur in low-permeability soils, but is likely in high-permeability (sandy) soils under
conditions of relatively low evaporative upflow.

1. Introduction
As human activity in many parts of the world puts an increasing demand on scarce

water supplies, the quality of sub-surface water and the accumulation of contaminants
in soil and aquifers are of increasing social and environmental significance. An
important set of problems concerns the accumulation of salt when groundwater
is extracted for agricultural irrigation or when civil engineering projects significantly
affect the groundwater level. Such problems are prevalent in hot arid regions, including
parts of Australia, India, southern Russia and Sahelian Africa, and climate change is
likely to exacerbate them and extend the affected areas (Schofield & Kirkby 2003),
with severe consequences for agriculture (Yeo 1999).

Evaporation from the surface draws water up through the soil: when this water
evaporates, its load of salt is precipitated, and if the phase transition always occurs
at the soil surface, then a thick crust of salt may accumulate there. However, other
scenarios are possible. For example, the evaporation front may not remain fixed at
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the surface, but instead descend through the soil. Additionally, the accumulation of
salt near the surface means that the near-surface water becomes more saline and
thus denser than that below it; this may lead to salt fingering and the redistribution
of saline water deep into the ground (where it may, for example, contaminate the
aquifer). Whether or not a gravitational instability occurs is important because it
determines which of the two distinct environmental problems must be addressed.

In this study, we aim to elucidate the basic physical mechanisms which control this
process rather than to incorporate the various (and site-specific) physical, chemical
and biological processes which occur in near-surface groundwater. To this end, we
employ an approach based on conservation laws, Darcy’s law for fluid motion and
equilibrium thermodynamical relations (Phillips 1991; Helmig 1997). This builds on
a substantial body of research on salt transport in groundwater, though few previous
studies have investigated travelling evaporation fronts. In particular, Wooding (1960),
Wooding, Tyler & White (1997), van Duijn et al. (2002) and Pieters & van Duijn
(2006) have used Darcian models to investigate instabilities driven by conditions fixed
at the soil surface; Yakirevich, Berliner & Sorek (1997) have modelled evaporation
from the soil surface and the vertical profiles of soil saturation and ion content
beneath it; Gowing, Konukcu & Rose (2006) have used a quasi-steady model based
on Richards’ equation to predict vertical profiles, including a descending evaporation
front, and tested it against laboratory experiments. Most relevant to the current
study, Tsypkin & Brevdo (1999) and Tsypkin (2003a) (see also Tsypkin 2003b) have
developed one-dimensional models of Darcian flow with salt and heat transport and
a moving evaporation front, but the stability of their solutions has not previously
been considered.

This paper is structured as follows. In § 2 we discuss the evaporation of fresh
groundwater, identifying the regimes in which the system temperature and aquifer
pressure control the position of the evaporation front and obtaining estimates for
upflow velocities. In § § 3 and 4 we investigate the more general situation in which
the groundwater is saline; we consider the linear stability of the salinity profile
which develops beneath a front descending at a prescribed velocity and use the
results of the simpler problem considered in § 2 to relate our findings to real-world
salinization problems. Finally, in § 5 we summarize our findings and discuss some
possible extensions to this work.

2. Evaporation of fresh groundwater
Groundwater evaporation and salt precipitation depend on the groundwater

salinity, the velocity of groundwater upflow, the soil porosity and permeability, the
system temperature and the air humidity. Estimates for the velocity of groundwater
upflow can be obtained from a simplified model of the motion and evaporation of
fresh water in a vertically bounded domain.

2.1. Problem formulation

We consider a physical system which consists of an aquifer or high-permeability
water-saturated layer with constant pressure PL, overlain by a comparatively low-
permeability layer of soil with thickness L (figure 1). We employ a Cartesian
coordinate system with the origin located at the surface and the z coordinate increasing
downwards. A physical assumption which should be noted is that all components of
the system are considered to be at a constant system temperature T0; we will discuss
the validity of this assumption below.
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Figure 1. Schematic of the system considered; see text for definitions of the quantities. (Note
that in § 2 the water is assumed to be fresh and there is no precipitated salt in the air–vapour
region.)

We assume that the soil is an undeformable porous medium with constant porosity
and that the evaporation process in the soil does not affect the state of the atmosphere,
which is characterized by constant system temperature T0, pressure Pa and humidity
νa . (The humidity is defined as the ratio of the effective density of water vapour
to that of air; it is typically much less than unity.) The assumption of constant νa

will not hold in circumstances in which the evaporative flux is high and a humid
boundary layer forms above the soil surface, as can frequently be seen, for example,
immediately after heavy rain on a hot day; we will comment below on the regimes in
which this may occur.

For simplicity we follow other studies (Gowing et al. 2006; Pieters & van Duijn 2006)
by considering the soil to be isothermal, with the same constant system temperature
T0 as the ground surface. This assumption requires some discussion. Temperature
variations in soils can be caused by the geothermal gradient, by seasonal warming
or cooling, by the diurnal variation in atmospherical conditions and also by the
evaporation process; the magnitude of variation due to each of these factors can be
estimated. A typical geothermal gradient is 0.03 Km−1, so over the vertical scales
of a few metres considered here, this contribution may be neglected. The depth of
penetration of the diurnal variation in ground surface temperature can be estimated
from the heat diffusion equation as L =(T a)1/2, where a is the thermal diffusion
coefficient and T = 12 h; typically a ≈ 0.3 × 10−6 and so L ≈ 0.1 m. It is therefore
reasonable to neglect this contribution when the evaporation front has penetrated
deeper than a few centimetres into the soil. The temperature change in the soil due
to the seasonal warming and cooling of the atmosphere is a very slow process and
takes a few months to cause changes of a few degrees in temperature if the depth
is about 1 m. Finally, variations in temperature due to the evaporation process are
small compared to the geothermal energy flux, as has been shown by Tsypkin &
Brevdo (1999). Consequently, in the first approximation we can neglect the influence
of temperature variation in the soil on the flow and transport processes considered
here.

Evaporation occurs when the partial pressure of vapour in the air just above the
soil surface is lower than the partial pressure of the saturated vapour. If this is the
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case, then an air–vapour region is formed, and an evaporation front separates this
zone from the zone saturated with water. Under these conditions, a diffusive flux of
vapour takes place in the air–vapour zone, while water rises from the aquifer towards
the evaporation front.

In the air–vapour domain the transport of water may be described using the
diffusion equation that follows from mass conservation for vapour (Tsypkin & Brevdo
1999):

∂ν

∂t
− ∇ · (Dv∇ν) = 0, (2.1)

where ν =
ρv

ρa

=
RaPv

RvPa

, Pv = Avρv, Pa = Aaρa. (2.2)

Here T0 is the (absolute) system temperature; Av,a are constants related to the
system temperature T0 and the gas constants Rv,a for vapour and air respectively
through the relation Av,a = Rv,aT0; Pa,v are the partial pressures for air and water
vapour respectively; Dv is the vapour diffusivity, ρv the mass of water vapour per
unit volume of gas and ρa the density of air. Typical values (see e.g. Lide 2001) are
Dv ≈ 2.4×10−5 m2 s−1, Pa ≈ 105 Pa, Ra ≈ 287 J kg−1 K−1, Rv ≈ 461 J kg−1 K−1 and T0 ≈
290 − 330 K.

In the domain saturated with water, we use mass conservation and Darcy’s law,
assuming that the groundwater density is constant, to write

∇ · v = 0, (2.3)

v = − k

φμw

(∇P − ρwgez). (2.4)

Combining (2.3) and (2.4) the equation for the pressure can be written as

∇2P = 0. (2.5)

In these equations P is the pressure in the water, φ the porosity and k the permeability
of the soil, v the filtration velocity, ρw the density of the groundwater, μw the dynamic
viscosity of the groundwater and g the acceleration due to gravity. Throughout, the
subscripts w, a and v will denote water, air and vapour respectively.

We assume that the evaporation occurs across a narrow front that separates the air–
vapour and water domains, and which we can treat as being of infinitesimal thickness.
If we denote the pressure, partial vapour pressure and humidity at the front by P∗, Pv∗
and ν∗ respectively, then the thermodynamic conditions at the evaporation boundary
have the form

ν∗ =
RaPv∗

RvPa

, (2.6)

where Pv∗ can be related to the system temperature T0 using the empirical correlation
presented by Vukalovitch (1955),

Pv∗ = 105 exp

[
−7226.6

(
1

T0

− 1

373.16

)
+ 8.2 log

(
373.16

T0

)
− 0.0057(373.16 − T0)

]
,

(2.7)

where T0 is measured in K and Pv∗ in Pa. This was obtained by fitting to data over the
range 273.16 K � T0 � 373.16 K; other correlations could be equally well employed,
such as that presented by Wagner & Pruss (2002) which differs from (2.7) by less
than 1% over the range of system temperatures considered here. It is useful to note
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some typical values: at T0 = 300 K, 320 K and 340 K, we find ν∗ ≈ 0.022, 0.065 and
0.167 respectively.

The conservation of mass of water at the evaporation front can be expressed as(
1 − ρv∗

ρw

)
V · n = v · n+ + Dv

ρa

ρw

(∇ν) · n−, (2.8)

where V is the velocity of the evaporation front and n is a downward-pointing unit
vector perpendicular to the front; the subscripts + and − indicate quantities which
exist below and above the front, respectively.

2.2. Steady-state solution of the evaporation problem

In order to illustrate the main properties of the evaporation process and to obtain
estimates for the upflow velocity, we consider the one-dimensional steady vertical
motion of water and vapour as a function of the controlling parameters PL (the
aquifer pressure) and T0 (the system temperature).

As noted previously, we assume for simplicity that the humidity is constant at
the soil surface and unaffected by the vapour flux; furthermore, we assume that the
(horizontal) water transport through the high-permeability aquifer is much larger
than the (vertical) water flux from the aquifer into the soil. We also assume that
a flux of groundwater from some distant source supports the temporally constant
pressure in the aquifer. The boundary conditions then have the form

P = Pa and ν = νa at z = 0; P = PL at z = L. (2.9)

When PL > ρwgL we refer to the aquifer as overpressured (so an upflow would be
driven by the pressure even if the soil were completely saturated with water); when
PL < ρwgL we refer to the aquifer as underpressured.

This problem has a stationary solution in which the evaporation surface occurs at
z = h and the velocity V of the surface is zero. The location of the interface h has
to be found as part of the solution. The stationary one-dimensional solution to (2.1)
and (2.5) can be written as

ν = νa +
ν∗ − νa

h
z in 0 < z < h; (2.10)

P = Pa +
PL − Pa

L − h
(z − h) in h < z < L. (2.11)

Substituting solutions (2.10) and (2.11) into the boundary relation (2.8) at the
evaporation front, we obtain a quadratic equation for the unknown h,

1 − Pa/PL

1 − h/L
− ρwgL

PL

− Dv

κ

ρa

ρw

ν∗ − νa

h/L
= 0, where κ =

kPL

φμw

, (2.12)

and thus, taking the unique positive solution for h,

h

L
= −λ + β

2
+

1

2

√
(λ + β)2 + 4β, where λ =

PL − Pa

ρwgL
−1, β =

Dvρa(ν∗ − νa)PL

κρ2
wgL

.

(2.13)
The parameter λ measures the deviation of the aquifer pressure from the hydrostatic
pressure, while the parameter β measures the importance of the upflow driven by
evaporation, relative to a purely pressure-driven upflow.

We can use (2.13) to investigate how the location of the evaporation surface z = h

and the magnitude of the upflow velocity v0 depend on the forcing conditions. In the
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Figure 2. The steady-state solution for a high- and a low-permeability system: (a) evaporation
surface depth h (m) for k = 10−13 m2 (contours at h = 0.001, 0.003, 0.01, 0.1 and 0.5 to 4.5 by
0.5); (b) evaporation surface depth h (m) for k = 10−18 m2 (contours at h = 7.5 to 9.5 by 0.5);
(c) upflow velocity v0 (mm/day) for k = 10−13 m2 (contours at v0 = 0.03, 0.1, 0.3, 1, 10 and 20
to 80 by 20); (d) upflow velocity v0 (mm/day) for k =10−18 m2 (contours at v0 = 0.01 to 0.035
by 0.005). In each case L = 10 m (so hydrostatic pressure corresponds to PL = 1.98 × 105 Pa),
φ = 0.3, νa =0 and other parameters have the standard values given in the text.

steady state (when V = 0) the upflow velocity v0 can be obtained from (2.8):

v0 =
ρaDv(ν∗ − νa)

ρwh
. (2.14)

Figure 2 illustrates the variation of h and v0 with system temperature T0 and with
the pressure PL in the aquifer, for a high-permeability system (k =10−13 m2) and a
low-permeability system (k = 10−18 m2); recall that the system temperature T0 controls
ν∗ through (2.6) and (2.7).

In the high-permeability system (figures 2a and 2c), the dynamics are essentially
pressure-controlled. When the aquifer is overpressured (PL > 1.98 × 105 Pa), v0 varies
approximately linearly with PL and the evaporation surface is effectively located
at the soil surface h ≈ 0, and so v0 ≈ k(PL − Pa − ρwgL)/(μwL) and h/L ≈ β/λ.
In these circumstances, the assumption of constant νa at the soil surface may be
inappropriate as a very high evaporative flux will humidify the air immediately above
the soil. When the aquifer is underpressured, the upflow velocity is very small and the
evaporation surface position varies approximately linearly with PL, h/L ≈ −λ, so that
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the hydrostatic pressure at the base of the soil approximately matches the aquifer
pressure PL.

In the low-permeability system (figures 2b and 2d ), both T0 and PL are significant;
the influence of T0 on h is slightly stronger than that of PL, and T0 exerts the dominant
effect on v0. There is now no clear difference between the over- and underpressured
regimes: as PL increases, this drives a greater upflow velocity and so h decreases to
provide a greater humidity gradient in the air–vapour region and thus a greater vapour
flux to the soil surface. As T0 increases, ν∗ and thus the evaporation rate increase:
this drives higher upflow rates, but because the increase in ν∗ strongly increases the
humidity gradient, the evaporation surface in fact moves further from the soil surface,
and so h increases with T0 in this regime. We also note that the upflow velocity
v0 is of course much smaller in the low-permeability system, being of the order of
0.1 mm per day, compared to tens of centimetres per day in the high-permeability
system.

As a final point, we recall that the results presented here were obtained assuming
a dry atmosphere, νa = 0. The effect of changing the atmospheric humidity is similar
to that of changing the system temperature, since all quantities calculated depend
on ν∗(T0) − νa . Consequently, in the high-permeability system, we may expect a
weak effect of νa on the front position and upflow, whereas in the low-permeability
system it becomes considerably more important: increasing νa , like lowering T0, will
tend to bring the evaporation front closer to the soil surface and to decrease the
upflow of water, while reducing νa will tend to move the evaporation front further
from the surface and to increase upflow. In the extreme case νa = ν∗, there is of
course no evaporation front within the soil, and any upflow is entirely pressure-
driven.

We have presented this stationary solution in order to illustrate the evaporation
process and to calculate the reduction of the water-table level and changes in the
upflow water velocity. We will now consider the problem in which the upflowing
groundwater is somewhat saline.

3. Evaporation of saline groundwater
In this section we derive the basic system when the mass of dissolved salt

causes significant variations in the density of the saline groundwater. Our approach
throughout, following, for example, van Duijn, Peletier & Schotting (1998) and
Tsypkin (2003a), will be to seek the simplest rather than the most comprehensive
description of the phenomenon: this contrasts with a number of other studies of
salt transport in groundwater, which have employed considerably more sophisticated
models (e.g. Hassanizadeh & Leijnse 1988). In particular, we will assume linear
constitutive and transport equations, ignoring deviations at high concentrations
(Hassanizadeh & Leijnse 1995), and neglect capillary and osmotic pressures.

The assumption of a constant system temperature T0 is also worth reiterating
briefly. In our stability analysis we will consider variations in water density between
fresh water and water with a saturation concentration of salt. The variations in
water density due to salt content are therefore of the order of as much as 200–
300 kgm−3: this contrasts with the variation of density due to temperature over a
range of 300–340 K, which is around 15 kg m−3 (Wagner & Pruss 2002). To leading
order, then, it is justifiable to neglect variations in density due to temperature and to
focus solely on the dominant effect of salt concentration.
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3.1. Basic equations

As before, we assume that the transport of vapour in the region above the front is
purely diffusive and may be written in terms of the humidity ν as (2.1). Below the
front, we assume that the velocity satisfies Darcy’s law

v = − k

φμs

(∇P − ρsgez), (3.1)

where ez is the unit vector directed vertically downwards and ρs and μs are,
respectively, the density and dynamic viscosity of the saline groundwater. In the
spirit of seeking the simplest physical model, we will assume that μs is constant,
ignoring deviations at higher concentrations (Hassanizadeh & Leijnse 1988).

To complete the set of governing equations we require equations relating the density
and salinity of the groundwater and describing the transport of the water and salt
components. Rigorously derived models for these processes can become very complex
(e.g. Hassanizadeh & Leijnse 1988, 1995); in the spirit of our approach we make some
assumptions which lead to a relatively tractable model and which should capture the
essential physics of the processes. We assume that the density ρs is linearly related to
the mass of dissolved salt ρc per unit volume of the solution, and so

ρs = ρ0 + αρc = ρc + ρw, (3.2)

where ρw is the (variable) mass of water per unit volume and where ρ0 = 1000 kgm−3

and α ≈ 0.64 (using the data presented by Herbert, Jackson & Lever 1988) are
constants. This is equivalent to the ‘additive rule’ for solution density which Herbert
et al. (1988) showed provides a good approximation to their tabulated data; although
it may become inaccurate very close to the saturation density, our working assumption
is that this should not distort the basic physics.

We further assume that the diffusive transport of ρs and ρc is Fickian (so we ignore
deviations at higher concentrations; see e.g. Hassanizadeh & Leijnse 1995) and that
the molecular diffusivities of the two components have the same constant value Dc.
(Typically Dc ≈ 1.6 × 10−9 m2 s−1; see e.g. Lide 2001.) We may then write

φ
∂ρs

∂t
+ φv · ∇ρs = φDc∇2ρs, (3.3)

and we observe that by linearity ρc and ρw obey the same transport equation as ρs ,
while we maintain a divergence-free velocity field, ∇ · v = 0.

3.2. Boundary and initial conditions

We assume that a narrow evaporation front migrates away from the ground and
separates regions saturated with salty water and an air–vapour mixture (figure 1);
the air–vapour region also contains precipitated salt in solid form, comprising part
of the porous matrix. The boundary conditions at the front may be found using the
conservation of mass of water and salt; we obtain[

1 −
(

1 − φpr

φ

)
ρv∗

ρw∗

]
V · n = v · n+

+ Dv

ρa

ρw∗

(
1 − φpr

φ

)
(∇ν) · n− − (1 − α)

Dc

ρw∗
(∇ρc) · n+ (3.4)

and (
1 − φpr

φ

ρsalt

ρc∗

)
V · n = v · n+ − Dc

ρc∗
(∇ρc) · n+. (3.5)
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Here an asterisk denotes a variable evaluated at the front; that is, since we assume
instantaneous thermodynamic equilibrium at the front, a variable evaluated at its
saturation value. The values for the saturation concentration c∗ = ρc∗/ρs∗ tabulated
by Lide (2001) may be approximated by

c∗ = 0.34863 − 0.18494

(
T0

273.15

)
+ 0.098963

(
T0

273.15

)2

. (3.6)

The solubility varies rather weakly over the relevant system temperature range:
at T0 = 300 K we find c∗ ≈ 0.265 and hence, using our linear equation of state,
ρs∗ ≈ 1204 kg m−3, ρc∗ ≈ 319 kg m−3 and ρw∗ ≈ 885 kgm−3; while at T0 = 340 K we
find c∗ ≈ 0.272 and hence ρs∗ ≈ 1211 kgm−3, ρc∗ ≈ 329 kg m−3 and ρw∗ ≈ 882 kg m−3.
The quantity ρsalt ≈ 2165 kgm−3 is the density of precipitated (solid) salt, and φpr is
the fraction of the soil just above the front which is occupied by precipitated salt; in
general φpr must be found as part of the solution.

From the salt diffusion equation we may estimate the typical time scale for the
diffusing front to affect the aquifer, t = L2/Dc. If L ∼ 1 m then t ∼ 109 s, or about
30 years. Thus, as Dc is small and the diffusion process very slow, it is natural to
investigate the salt redistribution in the semi-infinite space z > 0. The ground surface
is located at z = 0 with humidity ν = νa , while as z → ∞ we have

ρs = ρs0, ρc = ρc = ρc0, v = −v0ez (where v0 > 0). (3.7)

4. Solution and stability analysis for a front propagating at constant velocity
We will now consider a simplified problem which is amenable to analysis and which

provides some insight into the essential dynamics of the system. We will seek solutions
in which the front propagates downwards at a constant velocity V , with a constant
upflow v0. These conditions may be realized, for example, when the atmospheric
humidity decreases with time in an appropriate manner; however, we will make
a further assumption that the dynamics of the air–vapour region are unimportant
except insofar as they prescribe V . When we carry out the stability analysis, we will
further assume that the front remains unperturbed. This assumption is motivated by
the fact that the front will be stabilized both by gravity and by evaporation, as vapour
overlies liquid water; consequently, we may expect the fastest growing perturbations
to be those which involve little or no perturbation to the front. Our analysis resembles
that by van Duijn et al. (2002) but is generalized to allow for a moving front.

It is important to note that the linear analysis which we present here is not the last
word on the stability of the system. As in many other convection problems (Straughan
1992), subcritical nonlinear instabilities may be possible below the threshold of linear
instability, and this is indeed observed in the analysis of van Duijn et al. (2002). This
phenomenon lies beyond the scope of the current study, but is an important direction
for future treatments of the problem.

4.1. Non-dimensional formulation

We define the non-dimensional variables

S =
ρs − ρs0

ρs∗ − ρs0

=
ρc − ρc0

ρc∗ − ρc0

, z =
Dc

v0 + V
ζ, x =

Dc

v0 + V
x̂, y =

Dc

v0 + V
ŷ,

t =
Dc

(v0 + V )2
τ, V =

kg

φμs

(ρs∗ − ρs0)u, P =
Dc

v0 + V
(ρs∗ − ρs0)gΠ + ρs0gz.

⎫⎪⎬
⎪⎭
(4.1)
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The non-dimensionalized governing equations are

u = −∇̂Π + Sez, (4.2)

∂S

∂τ
+ Rsu · ∇̂S = ∇̂2S, (4.3)

∇̂ · u = 0, (4.4)

where a caret (ˆ) denotes differentiation with respect to dimensionless variables and
Rs is the Rayleigh number

Rs =
k

φμs

ρs∗ − ρs0

v0 + V
g (4.5)

defined over the boundary layer thickness of the salt concentration profile. We note
that this is almost identical to the Rayleigh number defined by van Duijn et al. (2002),
with the exception that the effective upflow velocity now becomes V + v0.

It is then convenient to eliminate some components of the velocity u = (u, v, w)
from the problem. Combining (4.2) and (4.4) we may write

∇̂2Π =
∂S

∂ζ
. (4.6)

Combining the z component of (4.2) with (4.6), we obtain

∇̂2w =

(
∂2

∂x̂2
+

∂2

∂ŷ2

)
S. (4.7)

It is then convenient to define a new vertical coordinate travelling with the front,

ξ = ζ − V

v0 + V
τ. (4.8)

Defining ∇′ = (∂x̂, ∂ŷ, ∂ξ ), the set of governing equations now becomes

∇′2Π =
∂S

∂ξ
, (4.9)

∇′2w =

(
∂2

∂x̂2
+

∂2

∂ŷ2

)
S, (4.10)

∂S

∂τ
− V

v0 + V

∂S

∂ξ
+ Rs

(
−∂Π

∂x̂

∂S

∂x̂
− ∂Π

∂ŷ

∂S

∂ŷ
+ w

∂S

∂ξ

)
= ∇′2S. (4.11)

The boundary conditions written in terms of non-dimensionalized variables are

S = 1 at ξ = 0; (4.12)(
1 − φpr

φ

ρsalt

ρc∗

)
V = Rs(v0 + V )w − ρc∗ − ρc0

ρc∗
(v0 + V )

∂S

∂ξ
at ξ = 0; (4.13)

S → 0 and w → −w0 = − v0

Rs(v0 + V )
as ξ → ∞. (4.14)

4.2. Stationary solution

We now seek a stationary solution below the front, in which w = wst = −w0 is constant,
S = Sst (ξ ) and Π = Πst (ξ ).

Equation (4.11) now reduces to

−dSst

dξ
=

d2Sst

dξ 2
. (4.15)
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Applying the boundary conditions at ξ = 0 and as ξ → ∞, we find

Sst = exp(−ξ ); (4.16)

similarly, we may obtain Πst = w0ξ + exp(−ξ ) within an additive constant (which for
our purposes is irrelevant).

Note that from the relation φpr/φ < 1 and the boundary condition (3.5) we have

V >
ρc0

ρsalt − ρc0

v0. (4.17)

This will be important in determining the appropriate physical parameter regime to
explore.

4.3. Linear stability analysis

To analyse the linear stability of the stationary solution (4.16) we put

S = Sst + δS, w = w0 + δw, Π = Πst + δΠ

and linearize (4.9), (4.10) and (4.11), assuming that these perturbations are small, to
obtain

∇′2δw =

(
∂2

∂x̂2
+

∂2

∂ŷ2

)
δS, (4.18)

∂δS

∂τ
+

∂δS

∂ξ
− Rs exp(−ξ )δw = ∇′2δS. (4.19)

The boundary conditions become

ρ̄Rsδw =
∂δS

∂ξ
at ξ = 0, where ρ̄ =

ρc∗

ρc∗ − ρc0

,

δS → 0 and δw → 0 as ξ → ∞. (4.20)

The parameter ρ̄ represents how large the salt content of the groundwater is just
beneath the front compared to the difference in salt content between the front and
the far field. The absolute (rather than relative) density is important in this problem
because it enters into the conservation of salt at the front; this is the key difference
between this problem and the classic stability analysis of a diffusive boundary layer
with throughflow (Wooding 1960).

Setting

S = Ŝ(ξ ) exp(στ + i(axx̂ + ayŷ)), w = ˆw(ξ ) exp(στ + i(axx̂ + ayŷ)) (4.21)

with a =
√

a2
x + a2

y , we obtain the coupled equations

(
d2

dξ 2
− a2

)
ŵ = a2 Ŝ (4.22)

and (
σ − d

dξ
− d2

dξ 2
+ a2

)
Ŝ − a2Rs exp(−ξ )ŵ = 0. (4.23)

We may then combine (4.22) and (4.23) to obtain the boundary value problem(
d2

dξ 2
+

d

dξ
− a2 − σ

)(
d2

dξ 2
− a2

)
ŵ = a2Rs exp(−ξ )ŵ (4.24)
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subject to the boundary conditions

(
d2

dξ 2
− a2

)
ŵ = 0,

(
d3

dξ 3
− a2 d

dξ
+ a2ρRs

)
ŵ = 0 at ξ = 0 (4.25)

and ŵ → 0 as ξ → ∞. (4.26)

Let R1
s (a, σ ) be the lowest positive eigenvalue of the generalized spectral problem

defined by (4.24), (4.25) and (4.26). If Rs > R1
a(a, 0), then there exists some σ > 0

such that Rs = R1
s (a, σ ), i.e. there exists a growing infinitesimal perturbation. If

R1
s (a, σ ) <R1

s (a, 0) then σ < 0 (see van Duijn et al. 2002). In other words, if, for
a fixed value of ρ̄, the Rayleigh number Rs lies above the neutral curve Rs = R1

s (a, 0),
then there exists a growing infinitesimal perturbation, implying that the front given
by (4.16) is unstable. Meanwhile the domain below the neutral curve corresponds to
decaying infinitesimal perturbations.

To determine the family of neutral curves Rs = R1
s (a, σ ) for different values of ρ̄,

we use the method of descending exponentials (Wooding 1960). We consider (4.24)
for σ = 0,

(
d2

dξ 2
+

d

dξ
− a2

) (
d2

dξ 2
− a2

)
ŵ = a2Rs(0) exp(−ξ )ŵ, (4.27)

and seek solutions in the form

ŵ =

∞∑
n=0

Rn
s (AAn exp[−(β + n)ξ ] + BBn exp[−(γ + n)ξ ]) , (4.28)

where A and B are arbitrary constants, and An, Bn, n= 0, 1, 2, ... are constants
to be determined from (4.27). We normalize the series by setting A0 = B0 = 1, and

we define β = a and γ = 1
2

+
√

1
4

+ a2, so the condition in the far field (4.26) is

satisfied. Substituting (4.28) into (4.27) indicates that the coefficients An, Bn satisfy
the recurrence relations

An+1

An

=
a2

[(β + n + 1)2 − (β + n + 1) − a2][(β + n + 1)2 − a2]
, (4.29)

Bn+1

Bn

=
a2

[(γ + n + 1)2 − (γ + n + 1) − a2][(γ + n + 1)2 − a2]
. (4.30)

Substituting (4.28) into the boundary conditions at ξ = 0 (4.25) we obtain the
homogeneous system of linear equations

A

∞∑
n=0

Rn
s An[(β + n)2 − a2] + B

∞∑
n=0

Rn
s Bn[(γ + n)2 − a2] = 0,

A

∞∑
n=0

Rn
s An[a

2(β+n)−(β+n)3 + a2ρRs]

+ B

∞∑
n=0

Rn
s Bn[a

2(γ+n)−(γ+n)3 + a2ρRs] = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.31)
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Figure 3. The marginal stability curves R1
s (a, 0; ρ̄) as functions of wavenumber a, for ρ̄ = 1

(lowest), 1.5, 2, 3, 4, 10 and ρ̄ → ∞ (highest). The dashed lines indicate the limiting cases ρ̄ = 1
and ρ̄ → ∞.

The existence of a non-trivial solution of the system (4.31) implies that the marginal
values Rs(a, 0, ρ) of the Rayleigh number Rs must satisfy

∣∣∣∣∣∣∣∣∣

∞∑
n=0

Rn
s An[(β + n)2 − a2]

∞∑
n=0

Rn
s Bn[(γ + n)2 − a2]

∞∑
n=0

Rn
s An[a

2(β+n)−(β+n)3+a2ρRs]
∞∑

n=0

Rn
s Bn[a

2(γ+n)−(γ+n)3+a2ρRs]

∣∣∣∣∣∣∣∣∣
= 0.

(4.32)

This equation was solved approximately by truncating the series for some large
number of terms and locating the real roots of the resulting polynomial in Rs

numerically; the lowest positive root was then identified and plotted. The results
presented here were calculated using Maple 10. At large a and Rs we require a
large number of terms in the series for accuracy; however, the critical quantity which
determines the stability of the system is the minimum over a of the lowest branch of
positive solutions R1

s (a, 0; ρ̄), and this always occurs at reasonably small values of a

and Rs . Numerical experimentation indicated that taking between 20 and 40 terms
gave fully converged results in the parameter regimes which we consider here.

Figure 3 shows the marginal stability curves as functions of wavenumber. For
any fixed value of ρ̄, the marginal stability curve R1

s (a, 0) tends to infinity both for
long waves (a → 0) and for short waves (a → ∞) and has a well-defined global
minimum over a. This minimum occurs for values of a of order unity, in other words
for perturbations whose horizontal structure scales with the thickness of the saline
boundary layer.

The variation of the stability condition with ρ̄ (figure 4a) is also easy to interpret.
As ρ̄ increases, the density contrast between the fluid just below the front and that at
depth increases; with a greater density gradient driving the fingering instability, the
system becomes unstable at lower values of the Rayleigh number. The most unstable
wavenumber a increases with ρ̄ (figure 4b). The lowest value of the minimum Rayleigh
number occurs when ρ̄ = 1, and is given by R1

s ≈ 9.71; it corresponds to a wavenumber
a ≈ 0.444.

We note that in the formulation we have presented the limit ρ̄ → ∞ is well defined:
this limit occurs as the salt content at depth, ρc0, approaches its saturation value ρc∗.
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Figure 4. (a) The minimum over a of the marginal Rayleigh number R1
s (a, 0; ρ̄) as a function
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s = 14.35 for the limit ρ̄ → ∞. (b) The corresponding values

of a, representing the wavenumber of the most unstable perturbations; the dashed line is the
value amin = 0.76 for the limit ρ̄ → ∞.

In this limit, the salt conservation boundary condition becomes δw = 0 at ξ = 0; this
is formally identical to the classical stability problem for a diffusive boundary layer
with throughflow (see e.g. van Duijn et al. 2002), and we may obtain a limiting curve
Rs(a) with its minimum at a ≈ 0.76, Rs ≈ 14.35 (the dashed curve in figure 3). We
note, though, that in this limit (ρs∗ − ρs0) → 0, so although instability occurs at a
finite Rayleigh number Rs it requires very small values of v0 + V to become unstable
in this limit.

4.4. Applications

To illustrate the applicability, as well as the limitations, of our analysis, we now
consider our stability predictions for a particular system similar to that considered
in § 2. As in that section, we consider a soil layer of finite depth, with upflow driven
by a combination of evaporative draw-up and overpressure in the underlying aquifer.
We use the expressions (2.13) and (2.14) derived there to estimate the upflow velocity
v0, neglecting any corrections due to the salinity of the water. The speed V of
the descending front is likely to vary in time, slowing as the front approaches its
equilibrium depth (cf. the experiments of Rose, Konukcu & Gowing 2005), and we
recall that if V becomes sufficiently small then criterion (4.17) no longer holds, and
the model breaks down because the soil just behind the front becomes completely
clogged with salt. The question we will address is whether or not instability can occur
before the front slows to this extent. To this end, we take the smallest permissible
value of V , V = v0ρc0/(ρsalt − ρc0) and thus the highest value which Rs may attain. If
this value of Rs lies above the stability boundary R1

s (ρ̄) then instability may occur;
if this value of Rs lies below the stability boundary then we may be confident that
instability will not occur before the soil has become clogged with salt. (We note that
by considering this particular problem in a layer of finite depth we have excluded,
for example, the possibility that the front might propagate downwards indefinitely
leaving the soil above it only partially clogged with salt; however, this restriction
allows us to specify the system in terms of directly observable physical conditions.)

As in § 2, we will hold most of the parameters of the problem fixed, with the
same values as used to plot figure 2. We will investigate the effect of altering the
aquifer pressure PL, the far-field solution density ρs0, the humidity νa and the soil
permeability k. Figure 5 shows the lines Rs = R1

s (ρ̄) plotted in the (PL, ρs0) plane and
in the (PL, νa) plane for various values of k.
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Figure 5. (a) Stability boundaries in the (PL, ρs0) plane for νa = 0. (b) Stability boundaries
in the (PL, νa) plane for ρs0 = 1100 kgm−3. The labels (S) and (U) represent the regimes in
which the system is, respectively, stable (so we may expect clogging with salt) and unstable
(so we may expect fingering). The system temperature T0 = 340 K in each case; labels indicate
permeability k in m2 ×10−14.

The most obvious feature of figure 5 is that our model never predicts instability
when the aquifer is significantly overpressured (PL � 2 × 105 Pa). We recall from
figure 2(c) that when the aquifer is overpressured, a strong upflow v0 is driven, which
will tend to suppress instability. Another clear feature of these figures is slightly more
surprising: as the permeability k decreases, the region of possible instability shrinks,
becoming confined to rather strongly underpressured aquifers and either very low
values of ρs0 or very high values of the relative humidity νa/ν∗, before disappearing
altogether. This is despite the fact that the stabilizing upflow velocity declines with
decreasing k (figures 2c and 2d ); this effect is overcome by the general decrease in
the Rayleigh number, which we recall is proportional to k.

It is notable that the system becomes more unstable with increasing νa (fig-
ure 5b) as this reduces the stabilizing upflow. This figure also indicates that when
the other parameters are fixed, the marginal curve νa(PL) is almost a straight line.
This is because the marginal stability condition becomes Rs = constant and hence
v0 = constant; now v0 ∝ (ν∗ − νa)/h from (2.14), and in this regime h is effectively
pressure-controlled, becoming a linear function of PL (cf. § 2.2); hence the marginal
stability condition becomes a linear relation between νa and h.

5. Discussion and conclusions
In this study we have used an approach based on conservation laws to develop

some simple models which aim to capture aspects of the process of groundwater
evaporation and upflow and of the inception of salt fingering which may occur
below a descending evaporation front. These models are motivated by environmental
problems such as the intensification of groundwater evaporation in response to river
water level changes and soil salinization due to seawater invasion of an aquifer. In
the latter case the evaporation process may lead to the development of saline seeps,
which are a major cause of salinization of littoral regions.

Mathematically, our simplified model of gravitational instability below a descending
front is closely related to the classical problem of the stability of a diffusive
boundary layer with upflow (Wooding 1960). The principal difference is that in
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our problem, the conservation of salt across the front introduces a mixed boundary
condition, containing the extra parameter ρ̄ which involves the absolute salinity of
the groundwater. This mixed boundary condition tends to make the system slightly
less stable, so the result of Wooding (1960) provides an upper limit for the Rayleigh
number Rs in our problem; nevertheless, our results are similar to those in the
classical problem. In particular, we find an overall minimum for the Rayleigh number
corresponding to marginal stability, Rs ≈ 9.71 when ρ̄ = 1, so regardless of the value
of ρ̄ we expect that infinitesimal perturbations will decay if Rs � 9.71; conversely
we expect instability if Rs � 14.35, regardless of the value of ρ̄. (It is, however,
possible that some perturbations may grow transiently even below the linear stability
boundary, as found for the classical problem by Pieters & van Duijn 2006, and also
that subcritical nonlinear instabilities may occur.)

An analysis of the steady, horizontally uniform solutions to the model for fresh
water (§ 2) reveals two main regimes of behaviour. When the soil is highly permeable,
the dominant influence is the aquifer pressure: when the aquifer is significantly
underpressured (i.e. when PL is rather smaller than ρwgL) the front locates itself so
that the hydrostatic pressure at the base of the soil approximately matches the aquifer
pressure, and the upward flux of water is rather small; conversely, when the aquifer
is overpressured (PL � ρwgL) there is a large pressure-driven upflow and the front
locates itself close to the soil surface. In the latter case our model is likely to break
down as the air just above the soil becomes humidified by the large vapour flux, so
the simple boundary condition ν = νa cannot be maintained and a more complicated
coupled problem must be considered. When the soil is less permeable, the location of
the evaporation surface is determined largely by the humidity gradient in the upper
part of the soil and becomes sensitive to system temperature and atmospheric humidity
through the control they exert on the humidity gradient between the evaporation front
and the soil surface.

Combining these results with the predictions of the linear stability analysis (§ 3), we
conclude that the most significant effect controlling the stability is the permeability
of the soil. If the permeability is very low (for example, a clay-rich soil with k ≈ 10−17

m2) then flow is very slow and incipient salt fingers cannot develop before being
overcome by diffusion, and so the system remains stable for all physically reasonable
conditions. Conversely, if the permeability is rather high (for example, a sandy soil
with k > 10−16 m2), then either stability or fingering is possible depending on the
conditions at the soil surface and in the aquifer. The climatic conditions (humidity
and system temperature) exert a strong influence by controlling the humidity contrast
between the soil surface and the evaporation front, thus influencing the upflow
and the position of the front: upflow is highest under hot dry conditions. The
upflow is also increased by a higher pressure in the aquifer: indeed, when the
aquifer is overpressured a pressure-driven upflow is able to stabilize the system quite
effectively. With a significantly underpressured aquifer, hot dry conditions at the soil
surface and a relatively shallow evaporation front are required in order to drive a
substantial upflow which stabilizes the system; otherwise we predict that fingering is
possible.

There are, of course, many possible extensions of the work presented here. In
particular, while we believe that the simple stability model we have considered is likely
to capture the essential controls on saline fingering beneath an evaporation front,
it would be valuable to analyse the stability of less idealized flows. The similarity
solution presented by Tsypkin (2003a) for a travelling evaporation–precipitation
front under time-varying upflow would be a natural candidate for such an analysis.
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It would also be of use to consider both less idealized scenarios and the nonlinear
development of fingers, though in these cases it is probable that numerical simulation
rather than analytical methods would be required. Notwithstanding this, we believe
that the results which we have obtained provide a useful guide to the likelihood of
salt fingering in real-world situations.
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